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Abstract. A new theoretical formalism for optimal quantum control has been presented. The
approach stems from the consideration of describing the time-dependent quantum systems in terms
of the real physical observables, namely the probability density ρ(x, t) and the quantum current
j (x, t) which is well documented in Bohm’s hydrodynamical formulation of quantum mechanics.
The approach has been applied for manipulating the vibrational motion of HBr in its ground
electronic state under an external electric field.

1. Introduction

Manipulating the outcome of chemical dynamics by properly tailoring an external field has
been an active field of research in recent times [1–14]. Problems where the external field is an
electromagnetic field have received the most attention [2–14], although other applications may
arise as well. Theoretically, there are two basic paradigms for such a method of control: a static
control scheme [13, 14] and a dynamic control scheme [2–12]. In the static scheme [13, 14]
one uses two or more CW light fields (optical coherence) and the superposition of two or more
eigenstates (molecular coherence) to cause interference between different plausible pathways
to a final quantum state, and the outcome is controlled by tailoring different parameters of the
optical and molecular coherences. Whereas the dynamic scheme [2–12] creates non-stationary
states of one’s choice, by optimally designing the electric field. This comes under the domain
of the optimal control theory [15], a mathematical tool commonly used in engineering. A basic
difficulty in attaining the control designs is the computational effort called for in solving the
time-dependent Schrödinger equation, often repeatedly in an iterative fashion over an extended
spatial region.

In this paper, we introduce a new formulation aimed at reducing the effort required
for quantum optimal control (QOC). Our recent work [16, 17] has shown that Bohmian
quantum hydrodynamics (BQH) is capable of being much more efficient than the conventional
method (e.g. FFT propagation) and this should carry over to the optimal control task. This
paper will show how the BQH can be utilized in QOC. The formulation is based on the
hydrodynamic description of the quantum mechanics emerging mainly from the work of
Bohm [18, 19] where the dynamics is described by two equations, namely the equation of
motion for the probability density, ρ(r, t) and that for the quantum current, j (r, t) which are
defined as ρ(r, t) = 	∗(r, t)	(r, t) and j (r, t) = 1

2
h̄
m

Im[	∗∇	 − 	∇	∗], where 	 is the
complex wavefunction in the time-dependent Schrödinger equation (TDSE) and Im refers to
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the imaginary value. Thus one bypasses the explicit use of the time-dependent Schrödinger
equation and hence the typically oscillatory nature of the complex wavefunction. This seems
beneficial in the first place because (a) one deals with the real quantum mechanical variables
and (b) density and quantum current possess a smooth spatial variation as opposed to the
wavefunction. Recent illustrations [16, 17] have demonstrated the smooth spatial and temporal
nature of the variables and the ability to discretize them on a relatively small number of grid
points. This paper is organized as follows. In section 2 we give a brief account of the BQH.
In section 3 we provide the QOC formulation based on the BQH. In section 4 we apply the
method to manipulate the vibrational motion of a HBr molecule in its ground electronic state.
Section 5 concludes the paper.

2. Bhomian quantum hydrodynamics

Despite its extraordinary success, quantum mechanics has, since its inception some 70 years
ago, been plagued by conceptual difficulties. According to orthodox quantum theory, the
complete description of a system of particles is provided by its wavefunction 	 which obeys
the time-dependent Schrödinger equation,

ih̄
∂	(q, t)

∂t
= Hψ(q, t). (1)

According to Bohm [18], the complete description of a quantum system is provided by its
wavefunction 	(q, t), q ∈ R3, and its configuration Q ∈ R3 where Q is the position of the
particle. The wavefunction, which evolves according to Schrödinger’s equation (equation (1))
choreographs the motion of the particle which evolves according to the equation

dQ

dt
= h̄

m

Im(	∗∇	)

	∗	
(2)

where ∇ = ∂
∂q

. In the above equation H is the usual non-relativistic Hamiltonian for spinless
particle given as

H = − h̄2

2m
∇2 + V. (3)

Equations (1) and (2) give a complete specification of the quantum theory describing the
behaviour of any observables or the effects of measurement. Note that Bohm’s formulation
incorporates Schrödinger’s equation into a rational theory, describing the motion of particles,
merely by adding a single equation, the guiding equation (equation (2)). In so doing it provides
a precise role for the wavefunction in sharp contrast with its rather obscure status in orthodox
quantum theory. The additional equation (equation (2)) emerges in an almost inevitable manner.
Bell’s preference is to observe that the probability current j	 and the probability density
ρ = 	∗	 would classically be related by j = ρv obviously suggests that

dQ

dt
= v = j/ρ. (4)

Bohm, in his seminal hidden-variable paper wrote the wavefunction 	 in the polar form
	 = ReiS/h̄ where S is real and R � 0, and then rewrote the Schrödinger’s equation in terms
of these new variables, obtaining a pair of coupled evolution equations, the continuity equation
for ρ = R2 as

∂ρ

∂t
= −∇ · (ρv) (5)
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which suggests that ρ should be interpreted as a probability density, and a modified Hamilton–
Jacobi equation for S,

∂S

∂t
+ H(∇S, q) + Vq = 0 (6)

where H = H(p, q) is the classical Hamiltonian function corresponding to equation (3), and

Vq = − h̄2

2m

∇2R

R

= − h̄2

2m
∇2 ln ρ1/2 − h̄2

2m
(∇ ln ρ1/2)2. (7)

Equation (6) differs from the classical Hamilton–Jacobi equation only by the appearance
of an extra term, the quantum potential Vq . Similar to the classical Hamilton–Jacobi equation,
Bohm defined the quantum particle trajectories, by identifying ∇S with mv, by

dQ

dt
= ∇S

m
(8)

which is equivalent to equation (4). This is precisely what would have been obtained classically
if the particles were acted upon by the force generated by a quantum potential in addition to
the usual forces. Although an interpretation in classical terms is beautifully laid down in the
above equations, one should keep in mind that in so doing, the linear Schrödinger equation is
transformed into a highly nonlinear equations (equations (5) and (6)). By taking the gradient
on both sides of equation (6) we obtain

∂

∂t
v = −(v · ∇)v − v × (∇ × v) − 1

m
∇(V + Vq). (9)

Defining the quantum current as

j(q, t) = 1

2

h̄

m
Im[	∗(q, t)∇	(q, t) − 	(q, t)∇	∗(q, t)] = ρ(q, t)v(q, t)

and using the equation ∇ × v = 0 we readily obtain the expression for the motion of the
quantum current as

∂

∂t
j = −v(∇ · j) − (j · ∇)v − ρ

m
∇(V + Vq). (10)

Equations (5), (6), (9) and (10) describe the motion of a quantum particle in the
hydrodynamical representation of TDSE. However, the many-particle description of the BQH
can be found elsewhere [24]. It may be noted that density alone cannot sufficiently describe
a quantum system, one requires both density and the quantum current for the purpose. As is
evident, the motion of a quantum particle is governed by the quantum current vector j unlike the
TDSE where the time propagator eiHt plays a key role in the particle’s motion. The difficulties
arising out of the evaluation of the exponential of an operator in more than one dimension
is completely bypassed in the hydrodynamical equations. Although the hydrodynamical
equations resemble the classical fluid dynamical equations, the quantum identity prevails
because of the fact that the quantum current evolves with respect to a potential Vq which has
no classical analogue [19]. It should be noted that the term Vq was inherently present in the
expression to stabilize the hydrodynamical approach to the TDSE. The numerical instability in
the hydrodynamical approach to the TDSE without the presence of theVq term may be related to
‘shock’ formation in classical hydrodynamics (cf the Navier–Stokes equation) without some
fictitious smoothing potential. In the numerical solution we shall work with the equations
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governing the motion of density (equation (5)) and the quantum current (equation (10)). The
motivation for considering the above equations lies in the fact that (a) the densityρ and quantum
current J are uniquely defined for a given potential in a many-body system, whereas the phase S
can be multivalued (S = S±nπ , n = even); and (b) they are quantum mechanical observables.
Equations (5) and (6) suggest that one can obtain density and the quantum current directly for
t > 0 provided the values were known at t = 0. Thus, the scheme bypasses the evaluation
of the wavefunction during the occurrence of the dynamics. However, at t = 0, one has to
solve the time-independent Schrödinger equation for the wavefunction and calculate ρ(q, 0)
and j (q, 0).

3. Quantum optimal control and Bhomian quantum hydrodynamics

Quantum optimal control theory seeks to design an external field to fulfil a particular objective.
This section will provide the rigorous mathematical formulation of the hydrodynamic method
to design an optimal time-dependent field that drives a quantum wavepacket to a desired
objective at the target time t = T . For this purpose, consider a general target expectation
value defined as �T = ∫ T

0 �ρ(x, T ) dx, where � is an observable operator and ρ(x, T ) is
the probability density which obeys the hydrodynamical equations, namely equations (5) and
(10). The goal is to steer �T as close as possible to a desired value �d . We define a quadratic
cost functional as

Jq = 1
2ωa(�T − �d)2. (11)

Minimization of Jq amounts to the equalization of�T to�d . However, ρ in the above equation
must obey the hydrodynamical equations, namely equations (5) and (10). Thus, we have to
fulfil this constraint whereby we obtain the unconstrained cost functional as

J̄ = Jq −
∫ ∫

λ1(x, t)

[
∂ρ(x, t)

∂t
+
∂j (x, t)

∂x

]
dx dt

−
∫ ∫

λ2(x, t)

[
∂j (x, t)

∂t
+

∂

∂x

(
j 2

ρ

)
+ ρ

∂

∂x
(V + Vq + Vext (t))

]
dx dt (12)

where Vext (t) represents the external potential due to the interaction between the particle and
the electric field, E(t) to be designed.

Thus, in the above equations, we have introduced two Lagrange multipliers λ1(x, t) and
λ2(x, t). There exists another constraint involving the total energy in the field which must be
imposed on the optimization procedure. This constraint takes the form

1
2ωe

[∫ T

0
E2(t) dt − Ep

]
= 0 (13)

where Ep is the energy of the pulse and E(t) is the field to be designed. The parameters ωa

and ωe are the positive weights balancing the significance of the two terms, namely Jq and

Je = 1
2ωe

∫ T

0 E2(t) dt , respectively. The term Je = 1
2ωe

∫ T

0 E2(t) dt represents the penalty
due to the fluence of the external field. So the full unconstrained cost functional takes the form

J̄ = Jq −
∫ ∫

λ1(x, t)

[
∂ρ(x, t)

∂t
+
∂j (x, t)

∂x

]
dx dt

−
∫ ∫

λ2(x, t)

[
∂j (x, t)

∂t
+

∂

∂x

(
j 2

ρ

)
+ ρ

∂

∂x
(V + Vq + Vext (t))

]
dx dt

+ 1
2ωe

[ ∫ T

0
E2(t) dt − Ep

]
. (14)
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In this equation J̄ is seen to be a functional of five functions, namely ρ(x, t), j (x, t), λ1(x, t),
λ2(x, t) and E(t), all of which are real, unlike in the conventional method [6–8]. In the above
equations J is the cost functional and j is the quantum current. The total variation of J̄ can
be written as

δJ̄ =
∫ ∫

δJ̄

δρ(x, t)
δρ(x, t) dx dt +

∫ ∫
δJ̄

δj (x, t)
δj (x, t) dx dt

+
∫ ∫

δJ̄

δλ1(x, t)
δλ1(x, t) dx dt +

∫ ∫
δJ̄

δλ2(x, t)
δλ2(x, t) dx dt

+
∫ ∫

δJ̄

δE(t)
δE(t) dx dt. (15)

For any optimal solution δJ̄ = 0, which gives

δJ̄

δρ(x, t)
= δJ̄

δj (x, t)
= δJ̄

δλ1(x, t)
= δJ̄

δλ2(x, t)
= δJ̄

δE(t)
= 0. (16)

We have provided in the appendix the full expression for δJ̄ . Comparing equation (16) with
equation (A14) we obtain

δJ̄

δλ1(x, t)
= −∂ρ

∂t
− ∂j

∂x
= 0 (17)

δJ̄

δλ2(x, t)
= −∂j

∂t
− ∂

∂x

(
j 2

ρ

)
− ρ

∂

∂x
(V + Vq + Vext (t)) = 0 (18)

δJ̄

δj (x, t)
= ∂λ2

∂t
+
∂λ1

∂x
+ 2

∂

∂x

(
λ2

j

ρ

)
− 2

λ2

ρ

∂j

∂x
+ 2

λ2j

ρ2

∂ρ

∂x
= 0 (19)

δJ̄

δρ(x, t)
= ∂λ1

∂t
+ 2

λ2j

ρ2

∂j

∂x
− ∂

∂x

(
λ2

j 2

ρ2

)
− 2

λ2j
2

ρ3

∂ρ

∂x
− λ2

∂

∂x
(V + Vq + Vext (t))

− 1

2µρ1/2

∂2

∂x2

(
1

ρ1/2

∂

∂x
(λ2ρ)

)
+

1

4µρ3/2

∂2

∂x2
ρ1/2 ∂

∂x
(λ2ρ) = 0 (20)

δJ̄

δρ(x, T )
= ωa[�T − �d ]x − λ1(x, T ) = 0 (21)

δJ̄

δj (x, T )
= −λ2(x, T ) = 0 (22)

δJ̄

δE(t)
=

∫
λ2(x, t)ρ(x, t)

∂

∂x
µ(x) dx + ωeE(t) = 0. (23)

Equations (19) and (20) can be rewritten in a simple form as

∂λ2

∂t
+

∂

∂x
(λ2vλ) + S1[ρ, j, λ2] = 0 (24)

and

∂λ1

∂t
+

∂

∂x
(λ1vλ) − λ2

∂

∂x
(V + Vq(λ2) + Vext ) + S2[ρ, j, λ2] = 0 (25)
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where

S1 = −2
λ2

ρ

∂j

∂x
(26)

and

S2 = −λ2
∂

∂x
(Vq(ρ) − Vq(λ2)) − j 2

ρ2

∂λ2

∂x
− 1

4ρ1/2

∂2

∂x2

[
1

ρ1/2

∂

∂x
(λ2ρ)

]

+
1

4ρ3/2

∂2

∂x2
ρ1/2 ∂

∂x
(λ2ρ). (27)

Note that the above expression for �T restricts the operator � to being only a
multiplicative operator, for example, the distant x̂ which we have used in the subsequent
numerical calculations. However, other forms of operator can also be considered in the
BQH QOC formulation with the different constraint expressions, for example, if � is
the momentum operator (p̂) we would require the constraint equations (5) and (9) since
pT = m

∫ T

0 ρ(x, T )∇S(x, T ) dx.
The equations for λ1 and λ2 resemble those of ρ and j , with the only difference being the

extra source terms S1 and S2. The source terms depend on ρ and j . vλ in the above equations
is the velocity associated with the Lagrange multiplier and is given as vλ = λ1

λ2
and Vq(λ2) is

given by

Vq(λ2) = − h̄2

2µ

∇2λ
1/2
2

λ
1/2
2

.

Note that equations (17) and (18) are the equations of motion for the probability density and
the quantum current density, respectively, obtained in section 2. Whereas equations (24) and
(25) are the equations of motion for the two Lagrange multipliers λ2 and λ1, respectively. It
should be noted that in obtaining the above equations (see the appendix) we have assumed
no variation on either ρ(x, 0) or j (x, 0). Thus, we start from an initial (t = 0) ρ(x, 0) and
j (x, 0) to solve equations (17) and (18) for ρ(x, t) and j (x, t), respectively. Equations (24)
and (25) can be solved for λ1(x, t) and λ2(x, t) provided starting values λ1(x, ts) and λ2(x, ts)

are known. These have been obtained from equations (21) and (22), respectively, as

λ1(x, ts) = ωa[�T − �d ]x and λ2(x, ts) = 0 (28)

where ts = T , i.e. the final time. Thus, one has to perform backward propagation to solve both
the equations of motion involving λ1(x, t) and λ2(x, t). Having calculated ρ(x, t), j (x, t),
λ1(x, t) and λ2(x, t) as described above, one has to carry out an optimization of the quadratic
cost functional (equation (11)) with respect to the electric field E(t) which, according to
equation (23), takes the form

E(t) = − 1

ωe

∫
λ2(x, t)ρ(x, t)

∂

∂x
µ(x) dx. (29)

This constitute the details of the BQH QOC method.

4. Application to the HBr molecule

We have mentioned in the preceding section that we need the initial density ρ(x, 0) and
the quantum current j (x, 0) in the present method. These have been evaluated by solving
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the time-independent Schrödinger equation for the HBr molecule in the 1'+ state where the
potential energy is assumed Morse type of the form [20]

V = De(1 − exp(−β(x − xe)))
2 (30)

where β = ωe

(
µ

2De

)1/2
, De = ω2

e

4ωexe
with ωe = 2648.975 cm−1, ωexe = 45.217 cm−1,

xe = 1.414 43 Å and µ is the reduced mass of HBr.
Having obtained ρ(x, 0) and j (x, 0) we carry out the control by the present method. The

following are the necessary steps for the computer implementation of the present method:

4.1. Present method

Step 1. Make an initial guess for the electric field E(t), which is zero in our calculation.

Step 2. Solve the coupled equations, namely equations (17) and (18) for ρ(x, t) and j (x, t),
respectively, starting from ρ(x, 0) and j (x, 0). The solution is calculated by using the flux-
corrected transport (FCT) algorithm [21] modified by us for the purpose of solving the quantum
hydrodynamical equations [16, 17]. In so doing, we adopt the Eulerian scheme

Step 3. Evaluate the final values for λ1(x, T ) and λ2(x, T ) given by equation (28).

Step 4. Use λ1(x, T ) and λ2(x, T ) to solve equations (24) and (25) for λ1(x, t) and λ2(x, t),
respectively. This is done by backward propagation, by putting dt = −dt (see [16]). We follow
the same method as in step 2 to solve these equations. It should be noted that equations (24)
and (25) have source terms which depend on ρ(x, t) and j (x, t) calculated in step 2.

Step 5. Calculate the quadratic cost functional given by equation (11).

Step 6. Optimize the function in equation (11) with respect to the electric field, E(t) given by
equation (29). Here we use the conjugate direction search method [22] for the optimization.

Step 7. Iterate steps 2–6 until a convergence criterion is satisfied.

The external potential is of the form Vext (x, t) = −µ(x)E(t), where µ(x) is the dipole
function for HBr and is given by [23] µ(x) = A0 + A1(x − xe) + A2(x − xe)

2, where
A0 = 0.788, A1 = 0.315 and A2 = 0.575. In our calculation the range of spatial dimensions
is 0 � x � 12 au and that of time is 0 � t � 2000 au. The total number of spatial mesh points
is 60, which gives +x = 0.2 au. Similarly, the total number of time steps is 2000, which
corresponds to +t = 1.0 au, ωe in equation (29) is taken as 0.5, and ωa as 1000. The target
operator is � = x and �d = 3.0 and 3.5 au.

Figure 1 shows the electric fields corresponding to two different values of �d namely
3.0 (full curves) and 3.5 (dotted curves). These pulses excite several vibrational states (not
shown here) mainly by a sequence of single quantum transitions. The peak value of the field
is ≈ 0.08 au (the corresponding intensity is ≈1014 W cm−2) for �d = 3.5 and ≈ 0.02 au (the
corresponding intensity is ≈1013 W cm−2) for �d = 3.0 au. A detailed characterization of
the optimal field can, however, be made by Fourier transforming the field. Figure 2 shows the
average distance 〈x〉 as a function of time. Notice the desired control of 〈x〉 = 3.0 and 3.5 au at
T = 2000 au is obtained through the oscillatory motion of the packed induced by the optimal
electric pulse (figure 1). Figure 3 shows the initial and final densities for the two values of �d .
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Figure 1. Optimal electric field shown as a function of
time for �T = 3.0 au (full curve) and �T = 3.5 au
(dotted curve).

Figure 2. The expectation values 〈x〉 shown as a function
of time for �T = 3.0 au (full curve) and �T = 3.5 au
(dotted curve).

Figure 3. Initial (t = 0) (dotted curve) and final (t = T )
(full curve) density corresponding to �T = 3.0 au (a)
and �T = 3.5 au (b).

The packet is distorted in shape, while approximately retaining its original variance during the
evolution. During the optimization process the total integrated probability density remained
at unity up to a deviation of 10−7. The number of iterations in the optimization to achieve the
results is five and it takes only 3 min (real) on an IRIX IP30 machine with a R4400 6.0 CPU. As
a test for the acceptability of the present method we have carried out the following experiment:
the electric fields (figure 1) so obtained have been plugged into the TDSE and then solved for
the wavefunction. The results for the density and the expectation value of 〈x〉 resemble closely
those given in figure 2.

5. Conclusion

In the present paper we have presented a new scheme for carrying out the optimal design
based on BQH. We have derived the control equations to obtain a time-dependent external
field with an illustration for the manipulation of the vibrational motion of the HBr molecule
in the 1'+ state. The working dynamical variables in the BQH, namely ρ (figure 3), j , λ1 and
λ2 are relatively slowly varying spatial functions (figure 4) compared with the wavefunction
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Figure 4. Hydrodynamical variables, namely j (x, T ) (b), λ1(x, T ) (c), λ2(x, T ) (d) and the real
(full) and imaginary (dotted) values of the wavefunction (a) plotted as a function of x. Note that
the hydrodynamical variables are smooth spatial function, unlike the wavefunction.

(figure 4, curve (a)) which apparently enhances the efficiency and the numerical saving of the
BQH QOC method for controlling dynamics.

Although we have illustrated our new method in one spatial dimension, the approach
is general and is directly extendible to higher dimensions and a wavepacket dynamics in
four dimensions has already been performed [16] within our method. The use of the
alternating direction implicit (ADI) [16, 17] method in the present method makes the quantum
control calculation much easier compared with the conventional method, especially for the
multidimensional problem. In conventional optimal control theory, the role of the complex
Lagrange multiplier is to provide feedback [6] for designing the electric field and to guide the
dynamics to an acceptable solution. The BQH QOC method, on the other hand, introduces
two such Lagrange multipliers, λ1 and λ2 both of which are real variables. The first Lagrange
multiplier λ1, which corresponds to the quantum current j (cf equations (18) and (25)) has,
however, no direct role to provide feedback for designing the electric field (equation (29)) and
only guides the dynamics in conjunction with the second Lagrange multiplier λ2. It may be
worth mentioning that since the quadratic cost functional (equation (11)) is a functional of
density, the Lagrange multiplier λ2 (equivalent to the density ρ, cf equations (17) and (24))
enters into the expression for the optimal electric field (equation (29)). However, cases where
one desires to manipulate the quantum flux (which is directly related to the quantum current
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j ) by constructing a quadratic cost functional dependent on j , the Lagrange multiplier λ1 will
appear explicitly into the expression for the external field.

It should be pointed out that the present method could prove to be difficult in cases where
the dynamics may lead to the creation of nodes in the density profile since the quantum potential
appearing in the constraint equation blows up on the occurrence of such an event. However,
such an occurrence of nodes can be countered by fixing a lower limit to the density of the order
of the machine precision. In other words, this means that one never encounters an absolute
nodal point where the density is exactly zero. Future studies need to explore the other area of
control within the BQH QOC method, for example, controlling the quantum flux.
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Appendix

The variation of J̄ given by equation (14) has to be taken with respect to ρ(x, t), j (x, t),
λ1(x, t), λ2(x, t) and E(t). Any variation δρ(x, t), δj (x, t), δλ1(x, t), δλ2(x, t) and δE(t)

will lead to the variation δJ̄ given as

δJ̄ = δJq −
∫ ∫ [

∂ρ

∂t
+
∂j

∂x

]
δλ1 dx dt

−
∫ ∫ [

∂j

∂t
+

∂

∂x

(
j 2

ρ

)
+ ρ

∂

∂x
(V + Vq + Vext )

]
δλ2 dx dt

−
∫ ∫

λ1

[
∂

∂t
δρ +

∂

∂x
δj

]
dx dt

−
∫ ∫

λ2

[
∂

∂t
δj +

∂

∂x

(
2j

ρ
δj − j 2

ρ2
δρ

)
+ δρ

∂

∂x
(V + Vq + Vext )

+ρ
∂

∂x
(δV + δVq + δVext )

]
dx dt + ωe

∫
E(t)δE(t) dt. (A1)

Now, we have δV = 0 and δVext can be written as δVext = −δ(µ(x)E(t)) = −µ(x)δE(t) −
E(t)δµ(x). Sinceµ(x) is kept fixed, we obtain δVext = −µ(x)δE(t). Jq in the above equation
is given by

Jq = 1
2ωa

[ ∫
ρ(x, T )x dx − xdcm

]2

. (A2)

Hence

δJq = ωa[〈x〉(T ) − xdcm]
∫

xδρ(x, T ) dx. (A3)

Substituting equations (A3) into equation (A1) we obtain

δJ̄ = ωa[〈x〉(T ) − xdcm]
∫

xδρ(x, T ) dx −
∫ ∫ [

∂ρ

∂t
+
∂j

∂x

]
δλ1 dx dt

−
∫ ∫ [

∂j

∂t
+

∂

∂x

(
j 2

ρ

)
+ ρ

∂

∂x
(V + Vq + Vext )

]
δλ2 dx dt
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−
∫ ∫

λ1
∂

∂t
δρ dx dt −

∫ ∫
λ1

∂

∂x
δj dx dt −

∫ ∫
λ2

∂

∂t
δj dx dt

−2
∫ ∫

λ2
j

ρ

∂

∂x
δj dx dt − 2

∫ ∫
λ2

1

ρ

∂j

∂x
δj dx dt + 2

∫ ∫
λ2

j

ρ2

∂ρ

∂x
δj dx dt

+
∫ ∫

λ2
j 2

ρ2

∂

∂x
δρ dx dt + 2

∫ ∫
λ2

j

ρ2

∂j

∂x
δρ dx dt − 2

∫ ∫
λ2

j 2

ρ3

ρ

∂x
δρ dx dt

−
∫ ∫

λ2
∂

∂x
(V + Vq + Vext )δρ dx dt −

∫ ∫
λ2ρ

∂

∂x
δVq dx dt

+
∫ ∫

λ2ρ
∂

∂x
(µ(x)δE(t)) dx dt + ωe

∫
E(t)δE(t) dt. (A4)

The fourth and sixth terms in the above equation can be simplified by integration by parts as
follows:∫ ∫

λ1
∂

∂t
δρ dx dt =

∫
λ1(x, T )δρ(x, T ) dx −

∫
λ1(x, 0)δρ(x, 0) dx

−
∫ ∫

∂λ1

∂t
δρ(x, t) dx dt (A5)

∫ ∫
λ2

∂

∂t
δj dx dt =

∫
λ2(x, T )δj (x, T ) dx −

∫
λ2(x, 0)δj (x, 0) dx

−
∫ ∫

∂λ2

∂t
δj (x, t) dx dt. (A6)

The fifth, seventh and tenth terms can similarly be expressed by integration by parts as follows:∫ ∫
∂

∂x
δj dx dt =

∫
λ1(xr , t)δj (xr , t) dt −

∫
λ1(xl, t)δj (xl, t) dt −

∫ ∫
∂λ1

∂x
δj (x, t) dx dt

(A7)
∫ ∫

λ2
j

ρ

∂

∂x
δj dx dt =

∫
λ2(xr , t)j (xr , t)

ρ(xr , t)
δj (xr , t) dt −

∫
λ2(xl, t)j (xl, t)

ρ(xl, t)
δj (xl, t) dt

−
∫ ∫

∂

∂x

(
λ
j

ρ

)
δj dx dt (A8)

∫ ∫
λ2

j 2

ρ2

∂

∂x
δρ dx dt =

∫
λ2(xr , t)j

2(xr , t)

ρ2(xr , t)
δρ(xr , t) dt −

∫
λ2(xl, t)j

2(xl, t)

ρ2(xl, t)
δρ(xl, t) dt

−
∫ ∫

∂

∂x

(
λ2

j 2

ρ2

)
δρ dx dt. (A9)

The 15th term is∫ ∫
λ2ρ

∂

∂x
(µ(x)δE(t)) dx dt =

∫ ∫
λ2ρ

∂

∂x
µ(x)δE(t) dx dt. (A10)

The 14th term involves the variation in J̄ due to the change in the quantum potential δVq ,

where Vq is given by Vq = − h̄2

2µ
∇2ρ1/2

ρ1/2 . This gives

δVq = − h̄2

4µρ1/2

∂2

∂x2

(
1

ρ1/2
δρ

)
+

h̄2

4µρ3/2

∂2

∂x2
ρ1/2δρ. (A11)
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By integration by parts we simplify the 14th term as follows:∫ ∫
λ2ρ

∂

∂x
δVq dx dt =

∫
λ2(xr , t)ρ(xr , t)δVq(xr , t) dt −

∫
λ2(xl, t)ρ(xl, t)δVq(xl, t) dt

+
∫

∂

∂x
(λ2ρ)

1

2ρ1/2

∂

∂x

(
1

2ρ1/2
δρ

)∣∣∣∣
xr

xl

dt

−
∫

∂

∂x

(
∂

∂x
(λ2ρ)

1

2ρ1/2

)
1

2ρ1/2

∣∣∣∣
xr

δρ(xr , t) dt

+
∫

∂

∂x

(
∂

∂x
(λ2ρ)

1

2ρ1/2

)
1

2ρ1/2

∣∣∣∣
xl

δρ(xl, t) dt

+
∫ ∫

∂2

∂x2

[
∂

∂x
(λ2ρ)

1

2ρ1/2

]
1

2ρ1/2
δρ(x, t) dx dt

−
∫ ∫

∂

∂x
(λ2ρ)

1

4ρ3/2

∂2

∂x2
ρ1/2δρ(x, t) dx dt, (A12)

where xr and xl are the right and left ends of the one-dimensional grid, and F(x)|xrxl =
F(xr) − F(xl) where F(x) is any function. The first and the second terms in equation (A12)
are the contributions due to the change in the quantum potential at the two ends of the boundary
only. Since, we take a large grid, ρ at the two ends of the grid is very small and can be assumed
to be constant. This leads to Vq(xr , t) and Vq(xl, t) being very high constant values at any
time and hence δVq(xr , t) = δVq(xl, t) = 0. By the same argument we can also neglect the
contributions due to the third, fourth and fifth terms. Combining all the terms we obtain the
full variation in J̄ as

δJ̄ = ωa[〈x〉(T ) − xdcm]
∫

xδρ(x, T ) dx −
∫ ∫ [

∂ρ

∂t
+
∂j

∂x

]
δλ1 dx dt

−
∫ ∫ [

∂j

∂t
+

∂

∂x

(
j 2

ρ

)
+ ρ

∂

∂x
(V + Vq + Vext )

]
δλ2 dx dt

−
∫

λ1(x, T )δρ(x, T ) dx +
∫

λ1(x, 0)δρ(x, 0) dx

+
∫ ∫

∂λ1

∂t
δρ dx dt −

∫
λ2(x, T )δj (x, T ) dx +

∫
λ2(x, 0)δj (x, 0) dx

+
∫ ∫

∂λ2

∂t
δj dx dt −

∫
λ1(xr , t)δj (xr , t) dt +

∫
λ1(xl, t)δj (xl, t) dt

+
∫ ∫

∂λ1

∂x
δj (x, t) dx dt − 2

∫
λ2(xr , t)j (xr , t)

ρ(xr , t)
δj (xr , t) dt

+2
∫

λ2(xl, t)j (xl, t)

ρ(xl, t)
δj (xl, t) dt +

∫ ∫
∂

∂x

(
λ2

j

ρ

)
δj (x, t) dx dt

+
∫

λ2(xr , t)j
2(xr , t)

ρ2(xr , t)
δρ(xr , t) dt −

∫
λ2(xr , t)j

2(xr , t)

ρ2(xr , t)
δρ(xr , t) dt

−
∫ ∫

∂

∂x

(
λ2

j 2

ρ2

)
δρ dx dt − 2

∫ ∫
λ2

1

ρ

∂j

∂x
δj dx dt

+2
∫ ∫

λ2
j

ρ2

∂ρ

∂x
δj dx dt +

∫ ∫
λ2

2j

ρ2

∂j

∂x
δρ dx dt
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−2
∫ ∫

λ2
j 2

ρ3

∂ρ

∂x
δρ dx dt −

∫ ∫
λ2

∂

∂x
(V + Vq + Vext )δρ dx dt

− 1

µ

∫ ∫
∂2

∂x2

[
∂

∂x
(λ2ρ)

1

2ρ1/2

]
1

2ρ1/2
δρ dx dt

+
1

µ

∫ ∫
∂

∂x
(λ2ρ)

1

4ρ3/2

∂2

∂x2
ρ1/2δρ dx dt +

∫ ∫
λ2ρ

∂

∂x
µ(x)δE(t) dx dt.

(A13)

This expression has 26 terms. Out of which, the fifth and eighth terms can be dropped
because we do not vary the initial density and quantum current. Again, the 10th, 11th, 13th,
14th, 16th and 17th terms can also be dropped with the assumption that ρ(x, t) and j (x, t) are
very small at the boundary. Thus, the actual full variation in J̄ becomes

δJ̄ = ωa[〈x〉(T ) − xdcm]
∫

xδρ(x, T ) dx −
∫ ∫ [

∂ρ

∂t
+
∂j

∂x

]
δλ1 dx dt

−
∫ ∫ [

∂j

∂t
+

∂

∂x

(
j 2

ρ

)
+ ρ

∂

∂x
(V + Vq + Vext )

]
δλ2 dx dt

−
∫

λ1(x, T )δρ(x, T ) dx +
∫ ∫

∂λ1

∂t
δρ dx dt

−
∫

λ2(x, T )δj (x, T ) dx +
∫ ∫

∂λ2

∂t
δj dx dt

+
∫ ∫

∂λ1

∂x
δj (x, t) dx dt +

∫ ∫
∂

∂x

(
λ2

j

ρ

)
δj (x, t) dx dt

−
∫ ∫

∂

∂x

(
λ2

j 2

ρ2

)
δρ dx dt − 2

∫ ∫
λ2

1

ρ

∂j

∂x
δj dx dt

+2
∫ ∫

λ2
j

ρ2

∂ρ

∂x
δj dx dt +

∫ ∫
λ2

2j

ρ2

∂j

∂x
δρ dx dt

−2
∫ ∫

λ2
j 2

ρ3

∂ρ

∂x
δρ dx dt −

∫ ∫
λ2

∂

∂x
(V + Vq + Vext )δρ dx dt

− 1

µ

∫ ∫
∂2

∂x2

[
∂

∂x
(λ2ρ)

1

2ρ1/2

]
1

2ρ1/2
δρ dx dt

+
1

µ

∫ ∫
∂

∂x
(λ2ρ)

1

4ρ3/2

∂2

∂x2
ρ1/2δρ dx dt +

∫ ∫
λ2ρ

∂

∂x
µ(x)δE(t) dx dt.

(A14)
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